Scientific Papers
Safe fieldwork strategies for at-risk individuals, their supervisors and institutions
As a result of identity prejudice, certain individuals are more vulnerable to conflict and violence when they are in the field. It is paramount that all fieldworkers be informed of the risks some colleagues may face, so that they can define best practice together: here we recommend strategies to minimize risk for all individuals conducting fieldwork.
Nature Ecology & Evolution
Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits
Miyauchi et al. present a combined analysis of 135 fungal genomes from 73 saprotrophic, endophytic and pathogenic species, and 62 mycorrhizal species, including 29 new mycorrhizal genomes. This study samples ecologically dominant fungal guilds for which there were previously no symbiotic genomes available, including ectomycorrhizal Russulales, Thelephorales and Cantharellales. Their analyses show that transitions from saprotrophy to symbiosis involve (1) widespread losses of degrading enzymes acting on lignin and cellulose, (2) co-option of genes present in saprotrophic ancestors to fulfill new symbiotic functions, (3) diversification of novel, lineage-specific symbiosis-induced genes, (4) proliferation of transposable elements and (5) divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild.
Nature Communications
Empirical evidence for resilience of tropical forest photosynthesis in a warmer world
Predicting tropical forest function requires understanding the relative contributions of two mechanisms of high-temperature photosynthetic declines: stomatal limitation (H1), an indirect response due to temperature-associated changes in atmospheric vapour pressure deficit (VPD), and biochemical restrictions (H2), a direct temperature response. Their relative control predicts different outcomes—H1 is expected to diminish with stomatal responses to future co-occurring elevated atmospheric [CO2], whereas H2 portends declining photosynthesis with increasing temperatures. Distinguishing the two mechanisms at high temperatures is therefore critical, but difficult because VPD is highly correlated with temperature in natural settings. Smith et al. used a forest mesocosm to quantify the sensitivity of tropical gross ecosystem productivity (GEP) to future temperature regimes while constraining VPD by controlling humidity.
Nature Plants
Multiplying the efficiency and impact of biofortification through metabolic engineering
Ending all forms of hunger by 2030, as set forward in the UN-Sustainable Development Goal 2 (UN-SDG2), is a daunting but essential task, given the limited timeline ahead and the negative global health and socio-economic impact of hunger. Malnutrition or hidden hunger due to micronutrient deficiencies affects about one third of the world population and severely jeopardizes economic development. Staple crop biofortification through gene stacking, using a rational combination of conventional breeding and metabolic engineering strategies, should enable a leap forward within the coming decade. A number of specific actions and policy interventions are proposed to reach this goal.
Nature Communications
Parallel global profiling of plant TOR dynamics reveals a conserved role for LARP1 in translation
TARGET OF RAPAMYCIN (TOR) is a protein kinase that coordinates eukaryotic metabolism. In mammals, TOR specifically promotes translation of ribosomal protein mRNAs when amino acids are available to support protein synthesis. The mechanisms controlling translation downstream from TOR remain contested, however, and are largely unexplored in plants. To define these mechanisms in plants, we globally profiled the plant TOR-regulated transcriptome, translatome, proteome, and phosphoproteome. Scarpin et al. found that TOR regulates ribosome biogenesis in plants at multiple levels, but through mechanisms that do not directly depend on 5′ oligopyrimidine tract motifs (5′TOPs) found in mammalian ribosomal protein mRNAs.
eLife
A bacterial endophyte exploits chemotropism of a fungal pathogen for plant colonization
Soil-inhabiting fungal pathogens use chemical signals released by roots to direct hyphal growth towards the host plant. Whether other soil microorganisms exploit this capacity for their own benefit is currently unknown. Palmieri et al. show that the endophytic rhizobacterium Rahnella aquatilis locates hyphae of the root-infecting fungal pathogen Fusarium oxysporum through pH-mediated chemotaxis and uses them as highways to efficiently access and colonize plant roots.
Nature Communications
Frontiers | Insights Into the Regulation of the Expression Pattern of Calvin-Benson-Bassham Cycle Enzymes in C3 and C4 Grasses
C4 photosynthesis is characterized by the compartmentalization of the processes of atmospheric uptake of CO2 and its conversion into carbohydrate between mesophyll and bundle-sheath cells. As a result, most of the enzymes participating in the Calvin-Benson-Bassham (CBB) cycle, including RubisCO, are highly expressed in bundle-sheath cells. There is evidence that changes in the regulatory sequences of RubisCO contribute to its bundle-sheath-specific expression, however, little is known about how the spatial-expression pattern of other CBB cycle enzymes is regulated. Afamefule and Raines use a computational approach to scan for transcription factor binding sites in the regulatory regions of the genes encoding CBB cycle enzymes, SBPase, FBPase, PRK, and GAPDH-B, of C3 and C4 grasses. They identified potential cis-regulatory elements present in each of the genes studied here, regardless of the photosynthetic path used by the plant. The trans-acting factors that bind these elements have been validated in A. thaliana and might regulate the expression of the genes encoding CBB cycle enzymes.
Plant Science
The response of carbon assimilation and storage to long‐term drought in tropical trees is dependent on light availability
Whether tropical trees acclimate to long‐term drought stress remains unclear. This uncertainty is amplified if drought stress is accompanied by changes in other drivers such as the increases in canopy light exposure that might be induced by tree mortality or other disturbances. Rowland et al's results suggest that long‐term responses to drought stress are strongly influenced by a tree's full‐canopy light environment and therefore that disturbance‐induced changes in stand density and dynamics are likely to substantially impact tropical forest responses to climate change.
Functional Ecology
Eight problems with literature reviews and how to fix them
Haddaway et al. aim to identify major pitfalls in the conduct and reporting of systematic reviews, making use of recent examples from across the field. Adopting a ‘critical friend’ role in supporting would-be systematic reviews and avoiding individual responses to police use of the ‘systematic review’ label, they go on to identify methodological solutions to mitigate these pitfalls.
Nature Ecology & Evolution
|